Uber zeolithische phosphorhaltige Germanate und die Verbindung GeP₂O₇

Von

A. Wittmann, H. Völlenkle und H. Nowotny

Aus den Instituten für Physikalische Chemie der Technischen Hochschule und der Universität Wien

Mit 2 Abbildungen

(Eingegangen am 3. Januar 1963)

Im zeolithischen Ammoniumhydrogengermanat läßt sich ein Teil des Germaniums durch Phosphor gemäß $(NH_4)_3H_{1-x}$ $Ge_{7-x}P_xO_{16}$ n H_2O ($x \le 0.5$) ersetzen. Als Dehydratationsprodukt entsteht daraus ein Mischoxyd von GeO_2 (Quarzmodifikation). Erstmals wird in der Reihe MeP₂O₇ (Me = Si, Sn, Pb, Ti, Zr, Hf und U) das Germaniumdiphosphat dargestellt, und zwar durch Erhitzen eines entsprechenden Gemisches von Ammoniumphosphogermanat und Ammoniumdihydrogenphosphat. Die Elementarzelle von GeP₂O₇ ist nicht, wie für die analogen Verbindungen beschrieben, kubisch, sondern lediglich pseudokubisch.

Zeolithische Phosphogermanate

In Arbeiten über zeolithische Hydrogengermanate Me₃HGe₇O₁₆ 4 H₂O (Me = K, Tl) war von uns über die partielle Substitution von Germanium durch Silicium und Zinn berichtet worden¹. Danach wird Silicium statistisch sowohl in die Tetraeder- wie Oktaederplätze des Zeolithgerüstes, Zinn dagegen nur in letztere eingebaut. Analoge Versuche zur Darstellung von Phosphogermanaten durch Hydrolyse geschmolzener Produkte gemäß K₂O (1 — x) GeO₂ · 0,5 x P₂O₅ blieben erfolglos.

Wie bereits erwähnt², kann der Ammoniumzeolith u. a. durch Einleiten von NH₃ in eine GeO₂-Lösung dargestellt werden. Im folgenden wurde daher versucht, einen Einbau von Phosphor in das Zeolithgerüst über phosphathaltige GeO₂-Lösungen zu erreichen.

¹ A. Wittmann, H. Nowotny und N. Münster, Mh. Chem. 90, 7 und 700 (1959).

² H. Nowotny und G. Szekely, Mh. Chem. 83, 568 (1952).

A. Wittmann u. a.: Über zeolithische phosphorhaltige Germanate 441

GeO₂-Lösungen (0,04 m) wurden mit verd. Phosphorsäure im molaren Verhältnis 1:1 bis 1:30 versetzt, ammoniakal. gemacht und auf dem Wasserbade zur Trockene eingedampft. Pulveraufnahmen der so gewonnenen Produkte zeigen nebeneinander die charakteristischen Liniensysteme des zeolithischen Germanates und von NH₄H₂PO₄. Zur Abtrennung des Ammoniumphosphates wurde das Salzgemisch mit Wasser aufgenommen, der feinkristalline Rückstand abfiltriert und im Exsikkator über Silikagel getrocknet. Auf diese Weise gelang die Darstellung eines phosphorhaltigen Zeoliths.

Aus Abb. 1 geht die Abnahme des Gitterparameters mit wachsendem Verhältnis P/Ge klar hervor. Die Gitterkontraktion läßt sich mit einer teilweisen Substitution der Ge-Atomionen durch Phosphor erklären. Für die

Bildung eines solchen Phosphogermanatzeoliths gemäß

 $(NH_4)_3H_{1-x}Ge_{7-x}P_xO_{16}$. \cdot n H₂O sprechen auch eindeutige Änderungen in der Intensitätsfolge der einzelnen Zeolithe. Besonders auffällig ist die Angleichung in den Intensitäten für die Reflexe (110) und (200) mit wachsendem Phosphor-Gehalt. Diese Intensitätsänderung kann umgekehrt auch zur Bestimmung des P/Ge-

Verhältnisses im Zeolith herangezogen werden. Auf Grund der Übereinstimmung zwischen berechneten und den aus Pulver- sowie Diffraktometeraufnahmen beobachteten Intensitäten (Tab. 1) muß auf Substi-

(hkl)	x = 0		x = 0,35		x = 0.5	
	Int.ber.	Int.beob.	Int. _{ber} .	Int.beob.	Int.ber.	Int.beob.
(100)	80,7	~ 75	82	~ 75	82,3	~ 75
(110)	1,2	1,4	1,7	2,6	1,9	3,1
(111)	9,2	12,1	8,0	10,1	7.6	9.5
(200)	4,3	5,2	3,7	5,8	3.4	5.8
(210)	0,3	0,6	0,2	0,5	0.1	0.4
(211)	25,4	~ 25	26,1	~ 25	26.3	25
(220)	10,9	8,6	10,2	7,5	9,9	6.5
(221)			,	, 		- , -
(300)	4,6	5,4	4,9	5,9	5,0	6,5
(310)	10,0	10,0	10,0	10,0	10.0	10.0
(311)	10,6	9,3	10,2	9,2	9,9	9,1

Tabelle 1. Intensitätsrechnung für die Verbindungen $(NH_4)_3H_{1-x}Ge_{7-x}P_xO_{16} \cdot n H_2O$ $(Zählrohraufnahmen, CuK_a-Strahlung)$

tution in den tetraedrischen Ge-Lagen geschlossen werden. Die obere Grenze für das P/Ge-Verhältnis liegt bei etwa 0,07, d. h. auf den tetraedrischen Plätzen sind 17% Ge durch P substituiert. Die nach der Molybdänblau-Methode kolorimetrisch ermittelten P-Werte stimmen mit dem röntgenographisch errechneten P-Gehalt gut überein.

In Übereinstimmung mit den röntgenographischen Daten stehen auch die Befunde der Differentialthermoanalyse (DTA). Wie aus Abb. 2 zu

Abb. 2. DTA-Kurven: Ammoniumhydrogengermanat (A) und Ammoniumhydrogenphosphogermanate $(NH_4)_3H_{1-x}Ge_{7-x}P_xO_{16}\cdot nH_2O$ mit $x\sim 0.4$ (B) bzw. ~ 0.5 (C)

ersehen, verschiebt sich das dem Abbau des Konstitutionswassers zuzuordnende Minimum mit steigendem P-Austausch stark zu höheren Temperaturen. Auch das Hydratwasser ist bei den Phosphogermanatzeolithen fester gebunden.

Die bei der DTA auf 500°C erhitzten Phosphozeolithe stellen noch röntgenamorphe Produkte dar, während weiteres Erhitzen auf etwa 800°C zur Ausbildung eines Oxyds mit Quarzstruktur führt. Bemerkenswert ist die gegenüber reinem GeO₂ beobachtete Änderung der Gitterparameter bzw. des c/a-Verhältnisses. Die Auswertung der Pulveraufnahme eines auf 800°C erhitzten Phosphogermanats mit $x \sim 0.4$ führt auf folgende Gitterparameter: $a = 4.97_3$, $c = 5.60_8 k X \cdot E$. mit c/a = $= 1.12_7$. Ein Vergleich mit reinem GeO₂ ($a = 4.97_1$, $c = 5.63_2 k X \cdot E$. mit $c/a = 1,13_3$) läßt vor allem eine Verkleinerung der c-Achse erkennen.

Obwohl eine Substitution von Ge durch gleiche Anteile an 3- und 5-wertigem Phosphor eine Mischphasenbildung von GeO₂ am einfachsten erklären würde, ist das Auftreten von 3-wertigem Phosphor nicht sehr wahrscheinlich. Ein derartiger Fall wird allerdings durch das Bestehen von Sb^{III}Sb^VO₄ (Antimontetroxyd) nahegelegt³. Eine andere Möglichkeit besteht in der Ausbildung einer Defektstruktur. Ähnlich wie bei Sb^{III}Sb₂^VO₆(OH) könnte auch noch fest gebundener Wasserstoff vorliegen⁴. Weitere Untersuchungen sind im Gange.

Die Verbindung GeP2O7

Im Zusammenhang mit der in letzter Zeit häufig diskutierten Frage über die oktaedrische Sauerstoffumgebung des Siliciums ist die Verbindung SiP₂O₇ mehrfach erwähnt worden⁵. Die Literatur über die als isotyp bezeichneten Verbindungen MeP₂O₇ (Me = Si, Sn, Pb, Ti, Zr, Hf und U) übergeht auffallenderweise die entsprechende Ge-Verbindung⁶⁻⁹.

Auf Grund der Ergebnisse über die zeolithischen Phosphogermanate schien berechtigte Aussicht zu bestehen, GeP_2O_7 aus diesen Verbindungen darzustellen.

Wie bei der Herstellung von Phosphogermanaten vereinigten wir GeO₂und Phosphorsäure-Lösungen im molaren Verhältnis 1:2, versetzten mit NH₃ im Überschuß und dampften zur Trockene ein. Das Pulvergemisch aus zeolithischem Phosphogermanat und NH₄H₂PO₄ wurde im Pt-Tiegel 1 Stde. bei 1100°C geglüht und abgeschreckt.

Im Röntgenogramm lassen sich zwei kristalline Phasen in etwa gleichen Mengen nebeneinander beobachten:

1. die gesuchte Verbindung GeP_2O_7 und

2. eine weitere, im folgenden als "Kristallart II" bezeichnete Phase, die bisher nicht identifiziert werden konnte. Durch mehrstündige Behandlung des Gemenges (3-5 g) mit Wasser im *Soxhlet*-Extraktor kann die leichter lösliche Kristallart II abgetrennt werden. Eine Pulveraufnahme

³ O. Zedlitz, Z. Kristallogr. 81, 253 (1932).

⁴ K. Dihlström und A. Westgren, Z. anorg. allgem. Chem. 235, 153 (1937).

⁵ Vgl. R. K. Iler, The Colloid Chemistry of Silica and Silicates, Cornell University Press, Ithaca, New York 1955.

⁶ G. R. Levi und G. Peyronel, Z. Kristallogr. 92, 190 (1935).

⁷ G. Peyronel, Z. Kristallogr. 94, 311 (1936).

⁸ E. Steger und G. Leukroth, Z. anorg. allgem. Chem. **303**, 169 (1960).

⁹ G. Peyronel, Gazz. Chim. Ital. 69, 254 (1939).

der zurückbleibenden, reinen Verbindung GeP₂O₇ läßt sich näherungsweise mit einer kubischen Elementarzelle ($a = 7,61 \ k \ X \cdot E$.) indizieren und fügt sich damit in die Reihe der Verbindungen vom Typ MeP₂O₇ ein (Tab. 2). Auch hinsichtlich der beobachteten Intensitäten besteht Übereinstimmung mit den aus der Literatur bekannten Vertretern (Tab. 3).

Bei genauer Betrachtung einer Pulveraufnahme mit $\operatorname{CrK}_{\alpha}$ -Strahlung ist allerdings an verschiedenen Reflexen eine deutliche Aufspaltung zu beobachten. Ferner treten einige schwächere, zweifelsfrei dem System zugehörige Linien auf, die mit der gewählten kubischen Indizierung nicht vereinbar sind und auf das Bestehen einer größeren Elementarzelle hinweisen. Mit Hilfe von Zählrohrgoniometeraufnahmen (CuK_{α}-Strahlung) konnten sämtliche Aufspaltungen sowie die zusätzlichen Beugungs-

Tabelle 2. Gitterparameter der Reihe MeP2O7

Ме	a [Å]			
Si	7,46*			
Ge	7,62*			
${ m Ti}$	7,80			
\mathbf{Sn}	7,89			
\mathbf{Pb}	8,01			
$\mathbf{H}\mathbf{f}$	8,18			
\mathbf{Zr}	8,20			
\mathbf{U}	8,61			

* Pseudokubische Aufstellung.

linien versuchsweise mit einer rhombischen Zelle und den Gitterparametern $(k X \cdot E.)$:

$a = 10,71_7$	~ 1/ 0
$b = 10,77_{6}$	$\sim a_{\rm kubisch} \cdot \sqrt{2}$
$c = 7.63_{1}$	

in Einklang gebracht werden. Es sei indes bemerkt, daß eine endgültige Entscheidung erst durch Einkristallaufnahmen möglich sein wird. Wegen dieses Sachverhaltes haben wir daher die Verbindung SiP₂O₇ einer neuerlichen Prüfung unterzogen. Tatsächlich treten auch hier zusätzliche Reflexe und eine, wenngleich schwächere Aufspaltung an einigen Linien auf. An Stelle der kubischen Pseudozelle mit a = 7,46 Å wird deshalb eine ähnlich vergrößerte Elementarzelle wie für GeP₂O₇ vorgeschlagen. Die Überprüfung des Strukturvorschlages von G. R. Levi und G. Peyronel⁶ für SiP₂O₇ und GeP₂O₇ bleibt einer weiteren Untersuchung vorbehalten. Dagegen sieht es so aus, als hätten die übrigen Vertreter wegen Bevorzugung oktaedrischer Sauerstoffumgebung die volle kubi-

H. 2/1963] Über zeolithische phosphorhaltige Germanate

sche Symmetrie. Von besonderem Interesse sollte die Sachlage bei $\mathrm{SnP_2O_7}$ sein.

(111)	vierwertiges Element						
(1161)	Si	Ti	Ge *	Zr	Sn	Hf	
(100)						, and a second secon	
(100)							
(110)							
(111)		s	mst			s	
(200)	st	st	sst	mst	\mathbf{st}	mst	
(210)	st	mst	st	m	\mathbf{ms}	SS	
(211)	st	\mathbf{mst}	st	m	\mathbf{ms}	S	
(220)	SS		mst	m	m	\mathbf{st}	
(221)			000	0	ma	ma	
(300)]			000	G	ms	1118	
(310)			SSS		s		
(311)	m	s	$^{\rm st}$	\mathbf{st}	\mathbf{st}	sst	
(222)	SS		m	ms	m	m	
(320)	m	SS	s	\mathbf{ms}		s	
(321)		SS	SSS				
(400)			SSS				
(410)							
(322)	\mathbf{ms}	s	s				
(411)							
(330)		SS	SS			SS	
(331)			m	m	m	st	
(420)	s	\mathbf{m}	\mathbf{mst}	\mathbf{st}	\mathbf{st}	sst	
(421)	s	SS	s				
(332)	s	SS	SSS	s	s	s	
(422)	\mathbf{m}	\mathbf{m}	\mathbf{mst}	\mathbf{st}	\mathbf{st}	sst	
(500)]							
(430)	s						
(510)							
(431)		_					
(511)							
(333)	\mathbf{st}	\mathbf{st}	mst	\mathbf{sst}	sst	ssst	
(520))							
(432)							
(521)	s	SS	8	88		aa	
(440)	\mathbf{st}	m	m	mst	m	mst	
$\chi = - \cdot \gamma$				+41.00		11190	

Tabelle 3. Gang der Intensitäten für die Verbindungen MeP 207

* Eigene Arbeit, sonst nach G. R. Levi und G. Peyronel⁶.

Bei der Untersuchung der geglühten Produkte konnte im Temperaturbereich von $300-1000^{\circ}$ C eine weitere "Kristallart I" aufgefunden werden, die bei tiefen Temperaturen einen mäßig kristallinen Zustand aufweist und oberhalb 1000° C in ein Gemenge der Phase II und GeP₂O₇ übergeht. Nach weiterem Erhitzen bleibt die Phase II allein zurück.

445

446 A. Wittmann u. a.: Über zeolithische phosphorhaltige Germanate

Von Interesse ist ferner die Möglichkeit, die von $D. A. Everest^{10}$ beschriebene Verbindung Ge(HPO₄)₂ einzusetzen. Auch hier führt die Dehydratation immer zur Bildung der genannten Kristallarten.

Versuche, das pseudokubische GeP_2O_7 in analoger Weise wie die isotypen Verbindungen durch Auflösen von GeO_2 in Phosphorsäure und nachfolgendes Erhitzen auf 500°C darzustellen, ergeben praktisch nur Kristallart I. Damit wird verständlich, warum die Verbindung GeP_2O_7 bisher nicht aufgefunden werden konnte.

Wir danken für die Unterstützung dieser Arbeit durch das Bundeskanzleramt, Sektion IV — Verstaatlichte Betriebe.

¹⁰ D. A. Everest, J. Chem. Soc. [London] 1953, 4117.